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Thermodynamics is the key component of materials science and engineering. The manifestation
of thermodynamics is typically represented by phase diagrams, traditionally for binary and
ternary systems. Consequently, the applications of thermodynamics have been rather limited in
multicomponent engineering materials. Computational thermodynamics, based on the
CALPHAD approach developed in the last few decades, has released the power of thermody-
namics and enabled scientists and engineers to make phase stability calculations routinely for
technologically important engineering materials. Within the similar time frame, first-principles
quantum mechanics technique based on density functional theory has progressed significantly
and demonstrated in many cases the accuracy of predicted thermodynamic properties compa-
rable with experimental uncertainties. In this paper, the basics of the CALPHAD modeling and
first-principles calculations are presented emphasizing current multiscale and multicomponent
capability. Our research results on integrating first-principles calculations and the CALPHAD
modeling are discussed with examples on enthalpy of formation at 0 K, thermodynamics at finite
temperatures, enthalpy of mixing in binary and ternary substitutional solutions, defect structure
and lattice preference, and structure of liquid, super-cooled liquid, and glass.
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1. Introduction

The development of new materials and the capability to
tailor existing materials to meet new and demanding
applications are critical for continued improvements in the
quality of human life. Traditionally, the field of materials
science and engineering has predominately focused on
processing materials, establishing structure-property rela-
tions, and measuring material properties. This empirical
approach is increasingly shifting toward the design of
materials to achieve optimal functionality, driven by
advances in computational materials science and information

technology, particularly in the last few decades. Today, we
are witnessing a paradigm shift in materials research and
development from experimental based knowledge creation
to integrated computational-prediction and experimental-
validation approaches.[1-4]

The computational prediction of materials performance
requires reliable thermodynamic and kinetic data. For over
30 years, a thermodynamic modeling technique, widely
known as the calculation of phase diagrams (CALPHAD)
method, has shown to be a viable approach in developing
thermodynamic databases and calculating phase equilibria
in multicomponent materials.[5,6] The CALPHAD method
was pioneered by Kaufman,[7-10] who systematically intro-
duced the foundational concept of lattice stability, i.e., the
Gibbs energy difference between the stable structure and
other structures of pure element, the methodology to
evaluate them in the multidimensional space of temperature,
pressure, and compositions, and their integration into multi-
component systems, which was later extended to model
multicomponent atomic mobility[11,12] and molar vol-
ume.[13,14] It seems certain that the CALPHAD method will
be extended further to model a wide range of materials
properties as a function of temperature, pressure, and
compositions because this method provides a hierarchical
mechanism to build multicomponent property databases
starting from pure elements to binary and ternary systems.

Modeling is a bridge between experimental observations
and theoretical predictions, as is the CALPHAD modeling.
From the beginning of the development of CALPHAD,
fundamental physical and chemical approaches in phase
stability were part of the discussions.[8,15,16] This was
also reflected in publications in the first volume of the
CALPHAD journal,[17-20] including approaches to predic-
tions of materials properties such as the tight binding model,
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ab initio pseudopotentials, distorted Wigner-Seitz cells, and
pair potentials. Over the last 50 years, both theoretical
predictions and CALPAHD modeling have progressed
significantly and interacted intensively, as evidenced the
development of CALPHAD lattice stability,[21,22] the series
of Ringberg workshops on integration of first-principles
calculations and CALPAHD modeling,[23-25] and systematic
first-principles calculations of lattice stability[26,27] and
energy of formation[28] along with advanced tools for the
CALPHAD modeling[29] and first-principles calcula-
tions.[25] Many issues have been resolved to bring them
closer, particularly the energy of formation of stable
compounds,[28] but serious discrepancies still exist for the
lattice stability of some elements.[30] There have been
considerable efforts in recent years to address the lattice
stability issue for pure elements.[27,31-34] The ab initio
molecular dynamics (AIMD) approach employed recently
by Ozolins for fcc and bcc W[34]seems to be particularly
promising. The AIMD approach will be discussed in more
detail in a later section of this paper. For nonstoichiometric
compounds with more than one type of Wyckoff positions,
lattice stability from first-principles calculations has
been used without detailed discussions on the instability
issue.[35-39]

This paper aims to give an overview on the CALPHAD
modeling and first-principles calculations based on our
research activities in the past several years. It is organized as
following. In Section 2, the CALPHAD modeling of
thermodynamics is presented. The fundamentals and
approximations of first-principles calculations are discussed
in Section 3 in terms of total energy at 0 K, multiscale
entropic contributions including mixing of atoms, lattice
vibration, thermal electrons and spin polarization, and
AIMD calculations. In Section 4, our research results in
integrating first-principles calculations and the CALPHAD
modeling are summarized in six areas, i.e., enthalpy of
formation at 0 K, thermodynamics at finite temperatures,
magnetic property and magnetic transition, enthalpy of
mixing in binary and ternary substitutional solutions, defect
structure and lattice preference, and structure of liquid,
super-cooled liquid, and glass. The last parts of the paper are
summary, acknowledgements, and references.

2. CALPHAD Modeling of Thermodynamics

Since the pioneering work by Kaufman who also coined
the name CALPHAD,[10] the CALPHAD modeling of
thermodynamics has been developed into a sophisticated
approach capable of calculating phase equilibria in multi-
component, technologically important materials. The history
of CALPHAD was recently reviewed briefly by Spencer,[6]

and several books have been devoted completely or
extensively to this topic.[40-42] The CALPHAD approach
is based on mathematically formulated models describing
the thermodynamic properties of individual phases. The
model parameters are evaluated from thermochemical data
of individual phases and phase equilibrium data between
phases as shown schematically in Fig. 1. The CALPHAD

approach is particularly valuable in materials science and
engineering in comparison with physics and chemistry due
to more complicated systems involving multicomponent
solution phases.

In practical applications of materials, the commonly
controlled processing variables are temperature (T), pressure
(P), and number of atoms or moles of component i (Ni),
which render the Gibbs energy (G) to be the state function to
be modeled as T, P, and Ni are its natural variables and used
in the CALPHAD modeling. While most theoretical con-
siderations are related to the interactions between atoms, the
atomic distance or volume (V ) thus becomes a controlling/
independent variable as in typical first-principles calcula-
tions, and the Helmholtz energy (F) with T, V, and Ni as its
natural variables becomes the state function to be modeled.
These two state functions are exchangeable through the
following equations

GðT ;P;NiÞ ¼ F þ PV ¼ F � @F
@V

V ðEq 1Þ

FðT ;V ;NiÞ ¼ G� PV ¼ G� P
@G

@P
ðEq 2Þ

In the CALPHAD modeling, the molar Gibbs energy of
individual phases is modeled. With most solid phases
having more than one sublattice, i.e., nonequivalent Wyck-
off sites, the compound energy formalism[43] has been
developed to take the existence of the sublattices into
account. In a recent review, Hillert[44] presented the progress
of the compound energy formalism, its applications to
various complex problems, and recent developments includ-
ing treatments of short range order. Short range order has
been typically treated with the pair approximation quasi-
chemical model[45-47] and more recently by the cluster site
approximation.[48] The discussion of this paper focuses on
the compound energy formalism.

Let us use ðAi � � �ÞaðBj � � �ÞbðCk � � �Þc � � � to represent a
solution phase, a, with multicomponents and multisublat-
tices. Each set of parentheses denotes one sublattice with the
letters inside the parentheses designating the elements in
the sublattice and the subscript outside the parentheses the
number of the sublattice site. The molar Gibbs energy of the

Fig. 1 Schematic diagram showing the contributions of thermo-
chemical and phase equilibrium data to the CALPHAD modeling
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a phase can be written in general as follows in terms of per
mole of formula (mf)

Ga
mf ¼

X

Ai;Bj;Ck ���

Y

p

ypq

 !
GU

Ai;Bj;Ck ��� þ DGa=U
mf ðEq 3Þ

In the above equation, the summation goes over all the
elements in each sublattice and the product of site fractions,
yq
p, goes over all sublattices, p, with one element, q, in the
corresponding sublattice, representing the reference Gibbs
energy of the a phase. GU

Ai:Bj:Ck ... is the Gibbs energy of a
structure U with one element in each sublattice,
ðAiÞaðBjÞbðCkÞc . . . ; called end-members or compounds,
and DGa=U

mf is the Gibbs energy difference between the a
phase and the reference Gibbs energy. The semicolon
separates sublattices. When all the end-members are chosen
to have the same structure as the a phase, DGa=U

mf denotes the
Gibbs energy of mixing DGmix

mf . When the end-members
have their respective, often stable, structures different from
that of the a phase, DGa=U is referred as the Gibbs energy of
formation DfGmf with respect to the chosen structures of the
end-members.

It is in the modeling of the Gibbs energy of mixing that
the concept of lattice stability is needed. In the case that the
a phase has only one sublattice, i.e., a substitutional
solution, Ga

Ai
represents the Gibbs energy of pure Ai in the

structure a, even though a may not be the stable structure of
pure Ai. Consequently, the Gibbs energy difference between
the stable structure (SER, stable element reference) and the
structure a is needed in order to describe the whole
composition range of the a phase. This Gibbs energy
difference is referred to as the lattice stability of Ai in the
structure a and defined as

DGa
Ai
¼ Ga

Ai
� GSER

Ai
ðEq 4Þ

Similarly, when the a phase has more than one sublattice,
the lattice stability of the end-member can be defined as the
following

DGa
Ai:Bj:Ck ��� ¼ Ga

Ai:Bj:Ck ��� �
X

zGSER
x ðEq 5Þ

where x is one of the elements and z the number of sublattice
sites which x is in, and the summation goes over all
elements in the end-member. In the framework of SGTE
(Scientific Group of Thermodata Europe), Dinsdale[49]

compiled the Gibbs energy functions of pure elements
derived from the heat capacity and enthalpy of transition,
and their common lattice stability from various extrapola-
tions. The Gibbs energy functions take the following general
form as a function of temperature in per mole of atoms

Gm ¼ aþ bT þ cT lnðTÞ þ
X

dnT
n ðEq 6Þ

These Gibbs energy functions are widely used in the
CALPHAD modeling. It should be pointed out that a
common lattice stability framework for end-members
remains to be developed due to the lack of data, and the
first-principles calculations have the potential to contribute
significantly.[36-38]

In modeling the Gibbs energy of mixing, one usually
separates it into ideal DidGmix

mf

� �
and nonideal Dnon-idGmix

mf

� �

mixing components with the latter sometimes called excess
Gibbs energy of mixing DxsGmix

mf . The ideal mixing assumes
mechanical mixing among atoms in each sublattice without
interactions between atoms, i.e., all atomic bonds are
identical. There is thus only an entropic contribution from
the random distribution of atoms in each sublattice, i.e.,

DidGmix
mf ¼ RT

X
z
X

yi ln yi ðEq 7Þ

where the first summation goes over all sublattices and the
second summation goes over all elements in that sublattice.
In real materials, the atomic bonding characteristics between
different atoms are unique, and the atomic mixing would
thus result in additional Gibbs energy change with preferred
local atomic arrangements, i.e., short-range ordering. This
can cause miscibility gaps, order-disorder transitions, or the
formation of compounds depending on the sign and
magnitude of the excess Gibbs energy of mixing
ðDxsGmix

mf Þ. The widely used mathematical formula for
DxsGmix

mf is the Redlich-Kister polynomial[50] shown below:

DxsGmix
mf

¼
X

yIIBj
yIIICk
���
X

yIAi1
yIAi2

X
m
mLAi1;Ai2:Bj:Ck ��� yIAi1

�yIAi2

� �m

þ
X

yIAi
yIIICk
���
X

yIIBj1
yIIBj2

X

m

mLAi:Bj1;Bj2:Ck ��� yIIBj1
�yIIBj2

� �m

þ
X

yIAi
yIIBj
���
X

yIIICk1
yIIICk2

X

m

mLAi:Bj;Ck1;Ck2��� yIIICk1
�yIIICk2

� �m

þ���þ
X

yIIICk
���
X

yIAi1
yIAi2

yIIBj1
yIIBj2

LSROAi1;Ai2:Bj1;Bj2:Ck ���

þ
X

yIIBj
���
X

yIAi1
yIAi2

yIIICk1
yIIICk2

LSROAi1;Ai2:Bj:Ck1;Ck2���

þ
X

yIAj
���
X

yIIBj1
yIIBj2

yIIICk1
yIIICk2

LSROAi:Bj1:Bj2:Ck1;Ck2��� þ���

þ
X

yIIBj
yIIICk
���
X

yIAi1
yIAi2

yIAi3
yIAi1

I IAi1
þyIAi2

I IAi2
þyIAi3

I IAi3

� �

ðEq8Þ

where mL is the mth binary interaction parameters with
colons separating elements between sublattices and comma
separating interacting elements in the same sublattice, LSRO

is the reciprocal interaction parameter to approximate the
effect of short range ordering (SRO),[51,52] and II are the
ternary interaction parameters. As an example, the compo-
sition square for a reciprocal solution defined as
(A,B)a(C,D)b is shown in Fig. 2(a) with its site fractions
and interaction parameters indicated. The Gibbs energy of
end-members and the Gibbs energy surface of end-
members, i.e., the summation in Eq 3, are depicted in
Fig. 2(b). The ideal entropy of mixing represented by Eq 7
makes the Gibbs energy concave, and further adjustment of the
Gibbs energy surface is realized by the interaction parameters.
This reciprocal solution is used to represent an ordering
solution when A and C are identical and B and D are identical
such as the L12 phase in the Fe-Ni system shown in Fig. 3.[53]

In the common practice of the CALPHAD modeling, the
interaction parameters usually take the form of A + BT with
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A and B being the model parameters, and the order of
interaction parameters,m, is between 0 and 2. These interaction
model parameters and the lattice stability of end-members (see
Eq 4 and 5) are evaluated from thermochemical data that is
directly related to derivatives of the Gibbs energy of individual
phases and phase equilibrium data where the chemical
potential of an element has the same value in all phases in
equilibrium. The thermochemical and phase equilibrium data
were primarily from experimental investigations until quite
recently that first-principles calculations are able to provide
quantitatively accurate data (see references cited in Section 1).
It should be emphasized that phase equilibrium data not only
demands very high accuracy on the relative values of the
Gibbs energy of phases, usually in the range of Joules or tens
of Joules, but also makes model parameters in a database
closely related to each other. This close relationship among
model parameters means that if one model parameter in one
phase is modified, all other model parameters, whether
directly or indirectly related to the modified parameter
through phase equilibria, need to be re-evaluated. Further-
more, from Eq 3 and the equations that follow, it is self-
evident that the Gibbs energy of a phase depends on both
lattice stability and interaction parameters. It is important that
both parameters are physically sound, as pointed out by
Kaufman early in the development of this approach.[8]

The sublattice models in the compound energy formalism
are derived from crystal structures of phases. The simplest

approach is to define all Wyckoff sites as separate sublat-
tices.[54] However, this often introduces many end-members
for complex phases, and there is often not enough data to
evaluate all the model parameters for both the end-members
and the interaction parameters. Consequently, some similar
sublattices are combined by taking into account elemental
site occupation preferences, coordination numbers, and
point symmetries.[54] Care must be taken when combining
sublattices as the model parameters may become dependent
on each other.[2,55]

The magnetic contribution to the Gibbs energy is
considered for magnetic elements such as Fe, Co, and Ni
by the following expression[56]

DGmag ¼ RTf ðT=TCÞ lnðbþ 1Þ ðEq 9Þ

with TC being the magnetic transition temperature, f(T/TC)
an empirical polynomial with different expressions above
and below the magnetic transition temperature to reproduce
the corresponding heat capacity,[56] and b the Bohr magnetic

Fig. 2 Composition square and interaction parameters for a
reciprocal solution, (A,B)a(C,D)b, (a), and corresponding Gibbs
energy surface of end-members (b)

Fig. 3 Three-dimensional plot of the Gibbs energy of L12
(Fe,Ni)0.75(Fe,Ni)0.25 at 530 �C (a) and its projection to the
composition square (b), noting the miscibility gap between the
ordered and disordered phases[53]
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moment. The composition dependency of TC and b are
modeled using equations similar to those in the Gibbs
energy model shown above.

3. First-Principles Calculations

First-principles calculations, based on density functional
theory,[57] require only knowledge of the atomic species and
crystal structure and yield quantities related to the electronic
structure and total energy of a given structure. For
thermodynamic properties of alloys, one currently needs
to calculate three additive contributions to the free energy

• The static energy or the 0 K total energy. In this case,
the atoms are kept fixed at their static lattice positions.

• For thermodynamic properties at finite temperatures,
the contribution of lattice thermal vibration needs to be
taken into account based on the lattice dynamics or
phonon approach. This also contributes to the so-called
zero-point energy.

• When the electronic density of states (DOSs) at the
Fermi level is high, the thermal electronic contribution
needs to be included.

Therefore, in a system with an atomic volume V at
temperature T, the Helmholtz energy F(V, T) is the
summation of the above three contributions written as[58]

FðV ; TÞ ¼ EcðV Þ þ FphðV ; TÞ þ FelðV ; TÞ ðEq 10Þ

For magnetic structures, spin polarizations can be added
to the above calculations and contribute to each energy term
in Eq 10. In this section, the fundamentals and approxima-
tions in first-principles calculations based on density
functional theory are briefly presented, and the methodol-
ogies in calculating the above contributions to the Helm-
holtz energy are discussed. For example, the 0 K total
energy, phonon dispersion curves from which phonon
density of states (DOSs) can be obtained, and electronic
DOS of ferromagnetic fcc Ni are shown in Fig. 4.[59]

3.1 First-Principles Calculations of Total Energy at 0 K

A solid can be thought of as a collection of interacting,
positively charged nuclei and negatively charged electrons
and can theoretically be treated by solving the many-body
Schrödinger equation involving both the nuclei and the
electrons. However, it is extremely difficult to solve the
equation due to its many-body nature. Several levels of
approximations have been introduced to obtain numerical
solutions to the Schrödinger equation.

The first approximation is the adiabatic or Born-
Oppenheimer approximation.[60] Since the nuclei are much
heavier than the electrons, it can be assumed that the
electrons are always in an instantaneous ground state with
the nuclei. The positions of the nuclei can thus be fixed by
solving the many-body Schrödinger equation for the
electrons only. Since the nuclei are ‘‘frozen,’’ they only
contribute to an external potential for the electrons.

The second approximation is the independent-electron
approximation. Each electron moves independently of the
others in an average effective potential collectively deter-
mined by all of the electrons. The key challenge has been to
use this approximation to effectively describe the many-body
electron-electron interactions. The early Hartree-Fock

(a)

(b)

(c)

Fig. 4 0 K total energy (open cycles) and magnetic moment
(open squares) with numbers for various fitted EOS (a), mea-
sured (open cycles) and calculated (lines) phonon dispersion
curves (b), and electronic DOSs (c), of ferromagnetic fcc Ni[59]
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approximation neglects all correlations except those required
by the Pauli exclusion principle. The modern density
functional theory (DFT) by Hohenberg and Kohn[61] is
formulated as an exact theory of many-body systems. It
states that a universal functional for the energy can be
defined in terms of the electron density, and the potential of a
system of interacting electrons is determined uniquely by the
ground state electron density. The Kohn-Sham approach
replaces the many-body electron problem using independent
electrons with an exchange-correlation functional of the
electron density and an associated exchange-correlation
energy and potential.[57] By explicitly separating the inde-
pendent-electron kinetic energy and long-range Coulomb
interaction energy, the exchange-correlation energy can be
approximated as a local functional of the electron density.

The third approximation is the exchange-correlation
functional approximation that describes the exchange-
correlation energy. In the local spin density approximation
(LSDA),[62] the exchange-correlation energy density at each
point in space is assumed to be the same as in a homogenous
electron gas with the same electron density. Exchange and
correlation energies for a homogenous electron gas are
available based on the Ceperley-Alder[62] and Perdew-
Zunger[63] fittings. The rationale for this approximation is
that in many solids, the range of exchange and correlation is
relative short. On the other hand, the generalized gradient
approximation (GGA)[64,65] stipulates that the exchange-
correlation energy density depends additionally on the
gradient of the electron density. The GGA is accomplished
by a low-order expansion of the exchange-correlation energy
of an electron gas. Numerous approaches have been devel-
oped for this low-order expansion including the widely used
PW91[66] and PBE[67] implementations. Most approaches
give similar results for small electron density gradients, but
appreciably different values for large gradients.

The fourth is the replacement of the strong Coulomb
potential of the nucleus and the tightly bound core electrons
by a pseudopotential, an effective potential acting on
valence electrons. Pseudopotentials obtained from atomic
calculations are not unique and can be tailored to simplify
calculations such as the commonly used ultrasoft pseudo-
potentials and the projector augmented wave (PAW)
method.[68] The PAW method keeps the full all-electron
wavefunction, while in the pseudopotential approach a
smooth pseudofunction is used which is required to match
only the value of the all-electron wavefunction at a given
radius and is more computationally efficient.

With above approximations, the DFT-based first-princi-
ples calculations solve a set of one-electron Schrödinger’s
equations, one for each electron in the system:

"
� �h2

2me
r2 � e2

4pe0

XN

I¼1

ZI

~r �~RI

�� ��þ
e2

4pe0

Z
qð~r 0Þ
~r �~r 0j jd

3~r 0

þ VXC½qð~rÞ�
#
wið~rÞ ¼ eiwið~rÞ (Eq 11)

In the above equation, ei is the ith one-electron energy
eigenvaluewithwið~rÞ being the ith one-electronwavefunction.

e is the electron charge, and e0 the vacuum permittivity.
�ð�h2=2meÞr2 represents the electronic kinetic energy with
�h ¼ h=2p being the reduced Planck constant,me the electronic
mass, and r2 ¼

P3
a¼1 @

2=@x2a where xa is the Cartesian
coordinates of the electron. The term, e2

4pe0

PN
I¼1 ZI=~r �~RI

�� ��
represents the nuclear attraction potential with~r ¼ ðx1; x2; x3Þ
and ~RI the nuclear coordinates of the Ith atom of nuclear
charge ZI . The term, e2=4pe0

R
ðqð~r0Þ=~r �~r0j jÞd3~r0 represents

the one-electron Hartree repulsion potential with qð~rÞ being
the total electronic charge density. VXC½qð~rÞ� represents the
one-electron exchange-correlation potential and is given by
the functional derivative:

VXC½qð~rÞ� ¼
d

dqð~rÞEXC½qð~rÞ� ðEq 12Þ

with EXC½qð~rÞ� being the exchange correlation energy with
the electron density of qð~rÞ.

First-principles calculations have been used to study the
ground state for a wide range of materials since all
properties of a system are completely determined when
the ground state electron density is known. The actual first-
principles total energy calculations are performed in a self-
consistent cycle. One first ‘‘guesses’’ the initial electron
density, calculates the effective potentials, then solves the
Kohn-Sham equations to determine a new electron density.
This loop is repeated until the new electron density (or the
new total energy) does not differ much from the old one,
i.e., the ground state is reached. In practice, the nuclei also
need to be relaxed into their equilibrium positions such that
the quantum-mechanical forces acting on each of them
vanish. Such structural relaxations are usually performed
using a conjugate-gradient or a quasi-Newton scheme.
There are three basic approaches in solving Kohn-Sham
equations: plane wave and grid methods, localized atomic-
like orbitals methods, and atomic spherical methods, with
the last being the most general for precise solution of the
Kohn-Sham equations. Furthermore, the total energy as a
function of volume can be obtained by systematically
carrying out the above calculations at volumes around that
of the ground state, which is equivalent to compressing or
expanding the solid. The equation of states (EOS) along
with the bulk modulus and its derivative with respect to
volume is generated by fitting the energy as a function of
volume using various EOS models.

DFT-based first-principles calculations rely on the con-
struction of cells of atomic structures with periodic
boundary conditions. By solving Eq 11 for stoichiometric
compounds and their respective constituents with given
atomic structures, energies of formation of compounds can
be obtained in a fairly straightforward manner with respect
to those constituents at 0 K. For nonstoichiometric phases
with various degrees of disordering, the periodic boundary
conditions are destroyed, and the atomic positions are not
completely fixed for given compositions. In principle, one
could increase the number of atoms in cells to create
supercells that adequately mimic the statistics of the
random alloys and sample all possible atomic configura-
tions, but it quickly becomes computationally prohibitive
for practical calculations. As many physical properties can
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be characterized by interactions between close neighbor
atoms, Zunger and his colleagues[69,70] proposed the special
periodic quasirandom structures (SQS) to mimic the
correlation functions of the random solution for the first
few shells around a given site, deferring errors due to
periodicity to more distant neighbors. Different from other
approaches in treating random solutions, the SQS method
preserves all the features of DFT-based first-principles
calculations.

The most challenging problem with the Kohn-Sham
approach occurs when the electrons are not completely
de-localized and interact strongly with each other such as in
the rare-earth elements and their compounds. There are no
existing exchange and correlation functionals to treat such
systems properly. Various methods have been developed to
improve the functionals when such effects are expected,
including the ‘‘self-interaction correction’’ (SIC),[71] the
LDA+U approach,[72] and the dynamic mean field theory
(DMFT).[73] These nonlocal formulations remain active
research areas of research.[74,75]

3.2 Multiscale Entropic Contributions

To calculate properties at finite temperatures, entropic
contributions to the total energy need to be taken into
account. Entropy is a measure of randomness in a system,
and its microscopic definition in terms of statistic mechanics
is based on the number of configurations of the system. In
the field of materials science and engineering, three types of
entropy are of interest, originating from three different
scales:

(a) atomic scale in terms of mixing of species, com-
monly referred as configurational entropy;

(b) inter-atomic scale in terms of lattice vibrations, com-
monly referred as vibrational entropy; and

(c) electronic scale in terms of thermal excitation of elec-
trons and spin polarizations, such as magnetic and
ferroelectric polarizations.

Based on statistical thermodynamics, the three contribu-
tions can all be represented by a logarithmic measure of the
DOSs, i.e.,

S ¼ kB lnðwÞ ðEq 13Þ

where kB is Boltzmann’s constant and w the number of
microstates for each case.

3.2.1 Atomic Scale: Mixing of Atoms. When the mix-
ing between species is ideal, the number of microstates is
w ¼ N !=PNi with N and Ni being the total number of atoms
and the number of atoms of component i. The entropy of
ideal mixing in terms of one mole of atom becomes

idSmix
m ¼ �R

X
xi ln xi ðEq 14Þ

where R is the gas constant and xi the mole fraction of atom
i. When the mixing is not ideal, short-range ordering
develops. There are various approaches to treat short-range
ordering. One of them is based on cluster expansion
and Monte Carlo simulations.[76,77] In this approach, a

microstate of atomic mixing is mapped into an Ising-like
lattice model with each species represented by a spin (Si).
The total energy of any alloy configuration (r = <S1,
S2,…,Sn>) can be conveniently calculated using the
following Ising-like Hamiltonian:

EðrÞ ¼ J0 þ
X

i

JiSi þ
X

i 6¼j
JijSiSj þ

X

i 6¼j6¼k
JijkSiSjSk

þ � � � ¼
X

f

Df Jf Pf (Eq 15)

In the above equation, Js are the effective cluster
interactions (ECIs). Figures f are symmetry-related group-
ings of lattice sites with k vertices, e.g., single site, nearest-
neighbor pair, three-body figures, etc., and span a maximum
distance of m (m = 1, 2, 3… are the first, second, and third-
nearest neighbors, etc.). Df denotes the degeneracy factor of
figure f. Pf is the correlation function defined as the product
of the spin variable over all sites of a figure, averaged over
all symmetry-equivalent figures of the lattice. The advantage
of the cluster expansion is that the energy converges rapidly
with respect to the number of vertices. A sufficient accuracy
for thermodynamic properties can be achieved by using
relatively compact clusters, mainly short range pairs and
small triplets. In systems where long-range elastic interac-
tions are important, one may use a reciprocal-space
formulation, equivalent to an infinite number of real space
pair interactions.[78]

The ECIs of the cluster expansion are typically deter-
mined by a fit of the energy of a number of configurations
from first-principles calculations. By subjecting the cluster
expansions to Monte-Carlo simulations, the free energy of
the system and thus the short-range ordering over the
composition and temperature ranges can be efficiently
obtained.

3.2.2 Inter-Atomic Scale: Lattice Vibration. At finite
temperatures, atoms tend to fluctuate around their equilib-
rium lattice positions, resulting in lattice vibrations which
can be represented by elastic waves made of phonons. Their
energy is quantized proportional to the angular frequency of
each elastic mode. Thermodynamic formulas can be derived
on the basis of statistical mechanics from the phonon
dispersion relation and summarized in terms of the phonon
DOS giving the number of modes of oscillation as a
function of frequency. In the Einstein model, each atom is
assumed to vibrate independently. In a system with N atoms,
there are 3 N independent harmonic oscillators with a
common frequency, i.e., the phonon DOS with a single
value. Alternatively in the Debye model, the lattice vibration
is solved in the acoustic (low frequency) phonon branch
with the upper limit characterized by the Debye frequency,
which is directly related to the Debye temperature. Through
the Debye-Grüneisen model,[79] the Debye temperature can
be made volume-dependent based on the quasiharmonic
approximation to account for anharmonicity.

In the commonly accepted lattice dynamics or phonon
approach, first-principles calculations can be performed with
either a harmonic or quasiharmonic approximation to obtain
the full phonon spectra for a given atomic configuration. In
these calculations, the restoring force constants tensors,
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U(i,j), on atom i due to the displacement of atom j are
computed from the second derivatives of the energy change
with respect to the displacements. In a system with N atoms,
the frequencies, v, of normal modes of oscillation between
two atoms can then be obtained from the 3 N eigenvalues of
the dynamical matrix of Uði; jÞ=

ffiffiffiffiffiffiffiffiffiffiffi
MiMj

p
with Mi and Mj

being the mass of atoms i and j. In the harmonic
approximation, the vibrational entropy is obtained by
summing up all microstates in terms of the vibrational
phonon DOS, g(v), as shown below[58,80]

Svib ¼ �kB
Z1

0

ln 2 sinh
hv

2kBT

� �	 

gðvÞdv ðEq 16Þ

with h being Planck’s constant.
There are two main approaches in determining the force

constants: the linear response theory and the supercell
method. In the linear response theory,[81] the dynamical
matrix is directly evaluated in reciprocal space through the
second-order change in energy due to atomic displacements
from the perturbation theory. It thus accounts for infinite
long-range force interactions and is accurate in the frame-
work of DFT. In the supercell method, also known as the
‘‘frozen’’ phonon method, the calculations are more
straightforward when compared to the linear response
theory. In this method, the atoms are displaced slightly
from their equilibrium positions, and the reaction forces are
calculated. The displacements and reaction forces are then
used to evaluate the force constants. Care must be taken in
choosing the proper supercell sizes and the number of
perturbations to ensure proper convergence of forces in
addition to the energy.

One simple approach beyond the harmonic approxima-
tion is the so-called quasiharmonic approximation to
account for thermal expansion and its effect on the
vibrational properties. In the quasiharmonic approximation,
the phonon DOS, g(v), is made volume dependent by
calculating the phonon DOS for several volumes within the
harmonic approximation. The equilibrium volume at each
temperature is then obtained by minimizing the free energy
with respect to volume.

3.2.3 Electronic Scale: Thermal Electrons and Polariza-
tion. Two types of contributions in the electronic scale are
discussed in this section: thermal electrons and spin
polarization. The thermal electronic contribution becomes
appreciable when the electronic DOS is high at the Fermi
energy level. The bare electronic entropy Sel in the
quasiharmonic approximation takes the form[58,82]

SelðV ; TÞ ¼ �kB
Z

nðe;V Þ½ f ln f þ ð1� f Þ lnð1� f Þ�de

ðEq 17Þ

where n(e, V ) is the electronic DOS with f being the Fermi
distribution.

The recent treatment of magnetic spin polarization
materials as a function of temperature[83] is based on the
Heisenberg Hamiltonian in the mean-field and random-
phase approximations with the exchange coefficients fitted

to energy and polarization data from first-principles calcu-
lations. On the other hand, we developed a more straight-
forward approach by considering the magnetic state at finite
temperatures being a mixture of various magnetic states
competing with each other.[84,85] Assuming thermodynamic
fluctuations happening locally, the partition function of a
system under constant volume (V ) and temperature (T), Z, is
then written as

z ¼
X

Zr ¼
X

exp �F
r V ; Tð Þ
kBT

� �
ðEq 18Þ

where r labels the local electronic state, FrðV ; TÞ is the
Helmholtz free energy for r, Zr is the partition function for
r. The entropic contribution due to the different electronic
states is obtained as[84,85]

Sconf ¼ �kB
X

xr log xr ðEq 19Þ

with xr ¼ Zr=Z being the probability for finding electronic
state r. As a first-order of approximation, other properties of
the mixture can be evaluated as a weighted average of those
of individual states.

To predict the phase equilibrium behavior of ferroelectric
materials as a function of temperature, Iniguez and
Vanderbilt[86] used a first-principles effective-Hamiltonian
approach[87] to carry out a theoretical study of the pressure-
temperature phase diagram of BaTiO3 with the path-integral
quantum Monte Carlo technique to include quantum-
mechanical fluctuations. The fundamental approximation
is to use a low-order Taylor expansion to represent the
energy surface based on the fact that the ferroelectric phase
transition involves very small atomic displacements and
strain deformations from the cubic structure. Based on our
new approach for predicting magnetic transitions, it seems
natural to consider the ferroelectric state at finite tempera-
ture as being a mixture of various ferroelectric states. We
have thus developed a similar approach to calculate the
pressure-temperature phase diagram of ferroelectric transi-
tions, which is submitted for publication.

3.3 Ab Initio Molecular Dynamics Calculations

Molecular dynamics (MD) is a powerful tool to predict
the thermodynamic and kinetic properties of solid, glass,
and liquid phases. In MD simulations, atoms and molecules
are allowed to interact for a period of time under Newton’s
second law or the equation of motion. If the force acting on
each atom is known, it is possible to determine the
acceleration of each atom in the system. Integration of the
equations of motion then yields a trajectory that describes
the positions, velocities, and accelerations of the atoms as
they vary with time. Based on the position and velocity of
each atom, the (statistical) average values of properties can
be determined, including pressure, energy, diffusion coef-
ficient, elastic constant, etc. Therefore, the key issue in MD
simulations is the force acting on each atom. In classical
molecular dynamics (CMD), empirical models are used to
describe the force by considering bond, bend, and dihedral
angle contributions with parameters fitted to experimental
data or first-principles calculations of small clusters.
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In the AIMD calculations proposed by Car and
Parrinello,[88] the forces are calculated on the fly using the
first-principles density functional theory as discussed above.
They regarded the minimization of the Kohn-Sham func-
tional as a minimization problem which can be solved by the
MD-based simulated annealing method. In the work by
Kresse and Hafner,[89] the minimization of the total energy
is performed after each MD step. The DFT electronic wave
functions are meaningful only when the electrons are in
their ground state, and the atomic motion is described using
Nosé dynamics[90,91] for closed systems at constant temper-
ature and pressure. In addition to the issues facing DFT
mentioned above, a recent review by Iftimie et al.[92]

pointed out that the key challenges in the field of AIMD are
the accuracy of the electronic structure method and the high
computational overhead associated with the calculations.
The former prevents accurate predictions of the total energy
and the latter limiting the size of systems studied.

In addition to using AIMD in studying atomic config-
urations,[93,94] the quantitative calculations of phase equi-
libria using AIMD have been recently reported for pure
Mo[95] and W,[34] showing great promise in accessing
various structures which are unstable states at 0 K.

4. Integration of First-Principles Calculations
and Entropies to CALPHAD Modeling

As mentioned in Section 2, there are two sets of input
data used in the CALPHAD modeling: thermochemical
data and phase equilibrium data. Thermochemical data is
usually for individual phases and scarcer than phase
equilibrium data which usually involves more than one
phases and is relatively easier to obtain experimentally than
thermochemical data. First-principles calculations thus
complement experiments ideally by providing much
needed thermochemical data of individual phases. In this
section, we will briefly present our research results in the
last few years in integrating first-principles calculations into
the CALPHAD modeling through calculations at both 0 K
and finite temperatures. In addition to thermodynamic
properties, we have also used first-principles calculations to
predict interfacial energy,[96] elastic coefficients,[97,98] and
diffusion coefficients.[99] However, we did find that there
are still significant discrepancies between the CALPHAD
and first-principles lattice stability,[27] which hopefully
will be resolved in the not-too-distant future. Nevertheless,
the new capabilities derived from the integration of
CALPHAD modeling and first-principles calculations
based on quantum and statistic mechanics provide a new
paradigm for enhanced predictability of physical property
modeling as shown schematically in Fig. 5, and is partic-
ularly valuable for new materials with the dearth of
experimental data.

4.1 Enthalpy of Formation at 0 K

When there are no phase transitions for the pure elements
and compounds between 0 K and room temperature, the

enthalpy of formation of a stable or metastable compound,
U, can be approximated by the following equation

DHUðA1�xBxÞ � EUðA1�xBxÞ � ð1� xÞEaðAÞ � xEbðBÞ
ðEq 20Þ

where E’s are the first-principles calculated total energies of
A1�xBx in the structure U, and pure elements A and B in a
and b structures, each fully relaxed to their equilibrium
geometries. Calculated enthalpies of formation can signif-
icantly enhance the robustness of thermodynamic modeling
and have been used in the following systems: Al-Sr,[100]

Al-Ca,[101] Ni-Mo,[102] Al-Mg,[103] Co-Y,[104] Zn-Zr,[105]

Mg-Al-Ca,[106] Ca-Mg,[107] Mg-Sr and Ca-Mg-Sr,[108]

Hf-Si-O,[109] Al2O3-Nd2O3,
[110] and Cu-Si.[111] In most

cases, the first-principles calculations provided enthalpy of
formation that was not previoulsy available in the literature.
In some cases, such as Al-Sr, Al-Ca, Ni-Mo, and Cu-Si, the
calculated data helps to define whether compounds are
stable or not at low temperatures and to explore possible
crystal structures observed in isoelectronic alloy systems. In
the Al-Ca system, we compared the enthalpy of formation
data from LDA and GGA using both an all-electron full-
potential linearized augmented plane-wave method and an
ultrasoft pseudopotential/plane wave method and found that
they are in reasonable agreement with each other. For
compounds with homogeneity ranges such as the C14, C15,
and C36 Laves phases, d-NiMo, Co5Y, and B4C,

[112]

enthalpies of formation of their end-members were calcu-
lated and many of them were found to be positive,
indicating that they are probably mechanically unstable at
0 K. This raises a concern with regard to the discrepancies
between the CALPHAD and first-principles lattice stability
of pure elements in fcc, bcc, and hcp structures.[27,30]

It should be pointed out that when there are phase
transitions of pure elements between 0 K and room
temperature, the above calculated enthalpy of formation at
0 K can no longer be directly compared with experimental
data. To extend the first-principles calculations to finite
temperatures, one faces the same challenge as in the case of
unstable end-members because the high temperature phases

Fig. 5 A schematic diagram showing the integration of first-
principles calculations, statistic thermodynamics, and CALPHAD
modeling for enhanced predictability
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are usually mechanically unstable at 0 K. This prevents the
calculations of phonon properties, an issue yet to be
resolved.

4.2 Thermodynamics at Finite Temperatures

We have used both the linear response theory[58] and the
supercell method[113] to predict the Helmholtz energy of Al,
Ni, B2-NiAl and L12-Ni3Al by considering the phonon and
thermal electronic contributions.With the deducedHelmholtz
energy from phonon DOSs and electronic DOSs, the thermal
expansion and enthalpy as a function of temperature were
calculated and compared with the experimental data. Using
the linear response theory,[58] our calculations show that the
enthalpies of formation are slightly temperature dependent
with a slope of �1.6 J/mol/K for B2-NiAl and �1.2 J/mol/K
for L12-Ni3Al. For Ni, the inclusion of thermal electronic
excitation results in a 10% increase in thermal expansion and
15% increase in enthalpy at 1600 K. In the supercell method,
supercells with 8, 16, and 32 atoms were tested.[113] It was
observed that with 32 atoms in the supercell, the phonon
dispersion curves and the phonon DOSs from the linear
response theory agree very well with the supercell method,
along with the calculated thermodynamic properties.

We applied the supercell method to the Zn-Zr binary
system.[114] From 0 K calculations, it was possible to find the
likely ground state of the Zn3Zr composition being L12 and
to propose the observed high-temperature allotropic trans-
formation of this phase to be from L12 to D023. From the
convex hull construction, it was determined that ZnZr2 and
Zn2Zr3 are not part of the ground state of the Zn-Zr system.
The vibrational properties of ZnZr, ZnZr2 and Zn2Zr3 show
that ZnZr2 and Zn2Zr3 are dynamically stable at 0 K even
though they did not belong to the ground state of the system.
The resulting thermodynamic properties from the vibrational
calculation indicate that ZnZr2 and Zn2Zr3 could become
stable with respect to the ZnZr + hcp two-phase field at
elevated temperatures as shown in the CALPHAD modeling
of the Zn-Zr system.[105] With these two phases stable at high
temperatures, it was possible to resolve the discrepancies in
the enthalpy of formation between the first-principles
calculations and experimental data.

We have carried out phonon calculations for a number of
systems including pure As[115] and B,[116] borides,[117]

boron carbide,[112] ternary Al,[118] and Mg systems.[119]

The predicted thermodynamic properties as a function of
temperature compare well with experimental data when
available. In the case of pure B, it is found that the defect-
free a-B is more stable than the defect-free b-B at lower
temperatures up to the predicted 1388 K, and the defect-free
b-B is mechanically unstable at high temperatures (above
1840 K) indicated by the appearance of imaginary phonon
modes. It was discovered that the instability can be
suppressed by introducing defects, e.g., extra B atoms,
consistent with the experimental observations that defects
occur commonly in b-B. In pure As, an anomalous bonding
with a considerable stretching force constant is found
between atoms spanning alternate first and second nearest
neighbors. This anomalous bonding, as a result of a Peierls
distortion, is traceable from the undistorted simple cubic

lattice exhibiting a giant Kohn anomaly at the R point. This
is due to Fermi-surface nesting along the C-R direction, and
stabilizes the layered A7 structure by suppressing the
appearance of imaginary phonon modes.

In the Ca-Sn system, the first-principles result for the
formation energy of the dominating Ca2Sn intermetallic
phase at 298 K is less exothermic by a factor of 1.6
compared to the experimental values.[119] We thus performed
two types of thermodynamic modeling: one based on the
first-principles output and the other based on the experi-
mental data.[120] Both models describe the phase diagram
with quite high accuracy. In the first-principles modeling, the
Gibbs energies of the intermetallic compounds were fully
quantified from the first-principles finite temperature prop-
erties, and the superiority of this thermodynamic description
is demonstrated. On the other hand, when the experimental
enthalpy of formation is used, the absolute entropies of the
Ca-rich intermetallic phases do not only deviate drastically
from the room temperature calculated first-principles data,
but also lead to unrealistically large entropies of formation of
the intermetallic phases and the enthalpy of mixing of the
liquid. It is shown that it is the combination of finite
temperature first-principle calculations and the tool of the
CALPHAD modeling that provides a sound basis to identify
and decide on conflicting key thermodynamic data in the
Ca-Sn system. The decision made for the enthalpy of
formation of Ca2Sn is also of the utmost importance for
calculations in multicomponent Ca-Sn-Mg alloy systems,
such as the extension of the Ca2Sn liquidus surface and other
equilibria involving this dominating phase.[121]

In the ternary Al-Ni-Y system, ten ternary compounds
were investigated[118] using the quasi-harmonic approxima-
tion to obtain both enthalpy and entropy of formation. They
are used in the prediction of the Al-rich region of the Al-Co-
Ni-Y system, resulting in good agreement between phase
fractions from the Scheil simulation when compared with
experimentally determined data for three Al-rich quaternary
alloys.[122]

4.3 Magnetic Property and Magnetic Transition

In an effort to understand the effects of rare-earth
elements on the properties of Mg alloys, we encountered
two challenges in predicting the thermodynamic property of
Ce as a function of temperature: the strongly correlated f
electrons and complex magnetic transitions of fcc Ce
between 0 K and room temperature with an intermediate
double-hcp phase. We used the GGA + U approach to treat
the strong correlations in Ce.[84] Evaluation of numerous U-J
values over a 1.0-6.0 eV range revealed that 1.6 eV gives the
most consistent prediction of nonmagnetic Ce (a-Ce) and
magnetic Ce (c-Ce) energetics over the range of atomic
volumes that includes both phases. Alternatively, for
U� J = �1.7 eV, the computed 0 K energy of magnetic
Ce is comparable to that of nonmagnetic Ce which is
implausible since c-Ce is not stable at 0 K. Values of U� J
larger than 1.7 eV were precluded from consideration since
magnetic Ce is lower in energy than nonmagnetic Ce at 0 K.
Using U� J = 1.6 eV, the individual Helmholtz energies of
a-Ce and c-Ce are calculated as a function of temperature
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and volume using Eq 10 with both phonon and thermal
electronic contributions included. The magnetic contribu-
tion to c-Ce due to spin disordering was taken into account
by the generalized Hund’s rule.

We consider that the state of the system at finite
temperatures and pressures/volumes is a mixture of the two
states of a-Ce and c-Ce and can be represented by the
partition function of the system in terms of Eq 18 and the
corresponding Helmholtz energy as FðV ; TÞ ¼ �kBT log Z.
By minimizing FðV ; TÞ with respect to volume for given
temperatures, the equilibrium state of the system is obtained.
The temperature-volume/pressure phase diagrams and the
EOS between volume and pressure are predicted with
remarkable agreement when compared to available exper-
imental data. It is predicted that the a-Ce to c-Ce transition
is first-order at low temperatures and second-order at high
temperatures. The predicted critical point is at Tc = 476 K
and Pc = 2.22 GPa in agreement with experimental data
from several groups. This is analogous to the miscibility
gap, common in binary alloy systems,[123,124] which can
also be induced by magnetic transitions.[125,126] It should be
mentioned that the two phases in equilibrium at low
temperatures are no longer pure nonmagnetic a-Ce and
ferromagnetic c-Ce, but mixtures of both states at the same
volume with one being dominant in one phase and the other
being dominant in the other phase. With the increase of
temperature, the fraction of the minor state increases until
the critical point is reached where the two states have equal
contributions. Beyond the critical point, the two phases
become undistinguishable and change their properties
continuously with temperature and pressure. Since each
phase is a mixture of two states with the same volume, the
miscibility gap in our calculation represents a coherent
miscibility gap residing in the incoherent miscibility
gap,[124] and both are shown in the publication.[84] The
rather scattered experimental data of the phase boundary
may reflect the different degree of coherency during the
phase transition. At 300 K, we predict a 5.36 Å3 c fi a
volume collapse (Vc � Va) which is in excellent agreement
with the experimental values of �4.8 and �5.0 Å3.
Furthermore, with the system’s Helmholtz energy available,
the heat capacity can be obtained and is shown in Fig. 6 for
a second-order magnetic transition as a function of temper-
ature at 2.25 GPa, slightly above the pressure of the critical
point.

It is self-evident from Eq 18 that more states are
desirable, particularly those between the two extreme states
of pure nonmagnetic a-Ce and ferromagnetic c-Ce. Conse-
quently, we have included an antiferromagnetic state with
energy between the nonmagnetic and ferromagnetic
states,[85] which gives similar macroscopic thermodynamic
properties, but with more microscopic details. We have
further developed approaches to calculate magnetization and
heat capacity as a function of temperature and pressure.

4.4 Enthalpy of Mixing in Binary and Ternary
Substitutional Solutions

In our research activities, we have focused on using SQS
to obtain the enthalpy of mixing in fcc, bcc, and hcp

solutions. Based on the SQS supercells for binary fcc
solutions,[70] we developed the SQS supercells for binary
bcc,[127] binary hcp,[128] and ternary fcc solutions.[129] The
SQS for ternary bcc and hcp solutions are also developed
and will be published shortly.[130] For compounds with
homogeneity ranges, the SQS approach can be applied to
individual sublattices as shown for B2,[131] Laves C14, C15,
and C36 phases,[36] L12,

[132] and halite.[133]

For perfectly random solutions, there is no correlation in
the occupation between various sites, and therefore corre-
lation function, Pk;m for figures with k vertices and a
distance of m such as single site, nearest-neighbor pair,
three-body figures etc., simply becomes the product of the
lattice-averaged site variable, which is related to the
composition. The SQS approach aims to find small-
unit-cell ordered structures that possess Pk;m

� �
SQS
ffi

Pk;m

� �
Random

for as many figures as possible. For random
A1�xBx bcc substitutional alloys, the correlation function is
Pk;m ¼ 2x� 1ð Þk . The 2-, 4-, 8-, and 16-atoms SQS
supercells[127] were generated using the alloy-theoretic
automated toolkit (ATAT),[134] respectively, for x = 0.5
and 0.25. By switching the A and B atom positions for
the supercell with x = 0.25, one obtains the SQS for
x = 0.75. The 16-atom SQS supercells closely mimic the
most relevant pair and multisite correlation functions of
random solutions. Those SQS supercells were tested in the
Mo-Nb, Ta-W, and Cr-Fe systems, where the bcc structure is
known to be stable over the whole composition range. The
predicted formation enthalpies, equilibrium lattice parame-
ters, and magnetic moments of those bcc alloys agree
satisfactorily with most existing experimental data in the
literature. The magnetic effects are found to be significant in
Cr-Fe. It is observed that even in perfectly lattice-
mismatched systems such as Cr-Fe, the average A-A, A-B,
and B-B bond lengths can be quite different.

For random A1�xBx hcp substitutional alloys, the corre-
lation function is the same as the bcc solutions, i.e.,
Pk;m ¼ ð2x� 1Þk . For simplicity, the ideal c/a ratio was
used to generate SQS supercells with 8 and 16 atoms.[128] It
should be mentioned that the order of a given figure may be

Fig. 6 Predicted heat capacity for second-order magnetic transi-
tion of Ce as a function of temperature at 2.25 GPa pressure,
slightly above the critical pressure[151]
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altered with the variation of c/a ratio, e.g., changing from
second nearest neighbor to third nearest neighbor, but it will
not cause changes in the values of the correlation functions.
Since there are two atomic sites in the hcp primitive cell,
some figures have more than one crystallographically
nonequivalent figure at the same distance. For example,
the two pairs (0, 0, 0) and (a, 0, 0); (0, 0, 0) and (1/3, 2/3,
1/2), have the same inter-atomic distance, a, but they do not
share the same symmetry operations. This degeneracy is
broken when the c/a ratio deviates from its ideal value.
Furthermore, in the hcp structure for a given range of
correlations, there are more symmetrically distinct correla-
tions to match than those in fcc and bcc and many more
candidate configurations to search through in order to find a
satisfactory SQS supercell. Seven binary systems, Cd-Mg,
Mg-Zr, Al-Mg, Mo-Ru, Hf-Ti, Hf-Zr, and Ti-Zr, were
studied to test the hcp A1�xBx SQS supercells for x = 0.25,
0.5, and 0.75. The radial distribution analysis for charac-
terizing local relaxation of the fully relaxed SQS supercells,
bond length, lattice parameters, and enthalpy of mixing
were obtained and compared with available experimental
observations. It was demonstrated that care must be taken to
ensure that the fully relaxed SQS maintain the hcp
symmetry.

For binary systems, conventional values of the site
occupation variables in terms of the Ising model are ±1
depending on whether a lattice site is occupied by A or B
atoms. In ternary systems, the site occupation variables take
+1, 0, or �1 if a lattice site is occupied by A, B, or C
atoms, respectively. The correlation functions of a random
substitutional solution can then be evaluated and used in
generating the SQS supercells at the equimolar composi-
tion where xA = xB = xC = 1/3 and at xA = 1/2, xB = xC =
1/4. By switching the occupation of the A atoms in the
second SQS supercell with either B or C atoms, two other
SQS supercells can be obtained where xA = 1/4, xB = 1/2,
xC = 1/4 and xA = xB = 1/4, xC = 1/2. Therefore, the
enthalpy of mixing at four different compositions in a
ternary system can be determined. Seven SQS supercells
with 4 to 64 atoms were generated. When the number of
atoms in the ternary SQS supercells was fewer than 24,
ATAT[134] was used to generate ternary fcc SQSs. The time
needed to find SQS supercells increases exponentially with
the size of a supercell because ATAT enumerates all the
atomic configurations in checking the correlation functions.
Therefore, a Monte Carlo-like scheme was used for
supercells with more than 24 atoms. The Ca-Sr-Yb system
was studied along with its constitutive binary systems.[129]

The calculated ternary enthalpies of mixing are com-
pared with the data extrapolated from the binaries based on
Eq 8 with the latter being slightly lower. This is supported
by the observation that first-principles calculations of all
the binary and ternary SQS supercells in the Ca-Sr-Yb
system exhibit very small local relaxation. It was also
observed that the enthalpies of mixing in fcc and bcc
solutions are very similar to each other, and they are all
positive as is the experimental enthalpy of mixing in the
liquid.

The ternary fcc SQS supercells were also applied to
Al-Cu-Mg, Al-Cu-Si, and Al-Mg-Si systems.[135] In the

Al-Cu-Mg and Al-Mg-Si systems, the ternary SQS enthal-
pies of formation agree well with the extrapolated enthalpies
of mixing for one set of binary systems, indicating weak
ternary interactions and that no ternary interaction param-
eters are needed with those binary data. On the other hand,
there are significant differences with the COST507 data-
base.[136] In the Al-Cu-Mg system, the incorrect enthalpy of
mixing in the fcc Cu-Mg system is found, while in the
Al-Mg-Si system, the enthalpies of mixing in the Al-Si and
Mg-Si systems in the COST507 database are considerably
less negative than those in the other literature and the first-
principles calculations. In the Al-Cu-Si system, the mixing
enthalpies for the fcc phase from the COST507 database and
the combined three binaries from the literature are close to
each other. However, both are several kJ lower than the
values from the first-principles calculations of ternary fcc
SQS, indicating that positive ternary interaction parameters
are needed. This is due to the Al addition weakening the
strong Cu-Si interaction, while the Cu addition tends to be
ordered with both Si and Al.

SQS calculations have been systematically applied in the
CALPHAD modeling of a number of systems, including
Ni-Mo,[102] Mg-Zr,[137] Al-Mg,[103] Zn-Zr,[105] K-Na and
KF-NaF,[133] Ca-Mg,[107] Ba-Ni and Ba-Ti,[138] Ca-Ce,[139]

and Cu-Si.[111]

4.5 Defect Structure and Lattice Preference

The study of point defects in terms of first-principles
calculations is usually carried out by introducing one defect
in a given supercell such as the formation of a vacancy. In
our work related to the prediction of diffusion coefficients,
the enthalpy and entropy of vacancy formation in a range of
fcc, bcc, and hcp elements were calculated,[99,140] showing
good agreement with available experimental data. To
investigate the effects of a high concentration of point
defects, the SQS approach can be used. Our research has
been focused on the B2 structure by developing SQS
supercells for random A1�xBxC B2 alloys with A and B
randomly distributed on one B2 sublattice and the second
sublattice completely occupied by C, so the substitutional
alloy problem is thus simple-cubic-based.[131] As an exam-
ple, the atomic structure of a SQS B2 A0.75B0.25C with total
32 atoms is shown in Fig. 7.[131] Switching the A and B
atoms results in a SQS of A0.25B0.75C. For B2 NiAl, defects
treated include Ni vacancies (Va), Al vacancies, Ni antisites
and Al antisites as Ni1�xVaxAl, Al1�xVaxNi, Al1�xNixNi,
and Ni1�xAlxAl pseudobinary B2 alloys at compositions
x = 0.25 and 0.5, respectively. The predicted formation
enthalpies, equilibrium lattice parameters, and elastic con-
stants of nonstoichiometric B2 NiAl are in satisfactory
agreement with experimental data in the literature. Our
calculations unambiguously show that Ni vacancies and Ni
antisites are the constitutional point defects in Al-rich and
Ni-rich B2 NiAl, respectively, even at high defect concen-
trations. A structural instability of B2 NiAl induced by Ni
antisites was predicted, which coincides with the occurrence
of a martensitic transformation in this compound at high Ni
concentrations.[131]
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In B2 PdIn, our calculations show that Pd vacancies and
Pd antisites are the constitutional point defects in In-rich and
Pd-rich B2 PdIn, respectively.[141] Furthermore, our results
suggest that the predominant thermal defects in B2 PdIn are
of triple-Pd type and not of Schottky type. Unlike B2 NiAl,
in which the thermal defects are of triple-defect type on the
Ni-rich side and of interbranch type on the Al-rich side,[142]

the thermal defects in B2 PdIn are of triple-defect type on
both sides of stoichiometry. Utilizing the statistical-mechan-
ical Wagner-Schottky model, the predicted vacancy con-
centrations are in satisfactory agreement with existing
experimental data in the literature.

In B2 RuAl, the dominant composition conserving
constitutional defect structures have been determined as
Ru vacancies and Al antisites in the Al-rich side with a high
energy penalty for any defects in the Ru-rich side.[143] In the
ternary B2 NiRuAl, it was observed that Ru prefers the
Ni-sublattice in NiAl, while Ni has a very strong preference
for the Ru-sublattice in RuAl. Furthermore, the enthalpies of
formation of the complex composition-conserving defect
structures due to the ternary element addition with respect to
B2 NiAl and B2 RuAl indicate that a miscibility gap is
likely to be stable at low temperatures in the NiAl-RuAl
pseudobinary system.[143]

In studying the defects in b-boron, the force constants
and phonon dispersion relations are calculated at equilib-
rium and larger than equilibrium volumes.[116] The most
unusual decrease of the force constant with increasing
volume is found in one of the stretching terms, caused by
the significant increase of the nearest bond length. Figure 8
plots the charge density contours around the hexagonal ring
a-b-c-d-e-f with a-b, c-d, and e-f being the nearest neighbors
in the icosahedra in b-boron.[116] It clearly demonstrates the
significant decrease of the charge density between the
nearest neighbors. Phonon calculations at several volumes
indicate that the imaginary phonon modes in the defect-free
b-boron occur with V/V0 larger than 1.067 (pertaining to
temperatures above 1840 K). It is thus expected that the
appearance of imaginary phonon modes can be suppressed

by introducing defects. Phonon calculations with extra B
atoms added to the weak bonding locations indicate that
(i) the largest negative stretching force constant increases
and is close to zero; (ii) the values of imaginary phonon
modes increase. Therefore, the presence of extra B atoms
hinders the bond cleavage. These are in agreement with the
analysis of the charge density distributions showing that the
maximum charge densities shift to the inner part of the B

Fig. 7 Atomic structure of a SQS for B2 (A0.75B0.25)C with A
in gray, B in white, and C in black, and total 32 atoms[131]

Fig. 8 Charge density contours around the hexagonal ring link-
ing the icosahedra in b-boron (a), at equilibrium volume (b), and
1.125 of the equilibrium volume (c)[116]
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hexagonal ring, implying the glue-like effect of the extra B
atoms.

4.6 Structure of Liquid, Super-Cooled Liquid, and Glass

Quantitative prediction of thermodynamic properties of
the liquid phase from first-principles remains to be a
challenging task due to the significant uncertainty of its
atomic arrangements. AIMD has emerged as a promising
approach in studying the structure and properties of liquid,
super-cooled liquid, and glass phases as mentioned in a
previous section of this paper. We started by examining the
structural evolution of Cu[144] and Zr[145] during two rapid
quenching processes from 1500 K for Cu and 2200 K for
Zr, i.e., a direct quenching of 2.091014 K/s and a stepwise
quenching with 1000 time steps (about 5 ps) at every 200 to
300 K temperature interval until room temperature, result-
ing in an average quenching rate of 4.091013 K/s. Between
two temperatures in the stepwise quenching, the system is
quenched at a rate of 1 K per time step as in the direct
quenching approach. Internal energy, pair-correlation func-
tions, and bond pairs as a function of temperature were
characterized for both quenching processes.

The AIMD predicted pair correlation functions of Cu at
1500 K agree well with experimentally measured data even
for the second and third peaks. Good agreement is also seen
with the self-diffusion coefficient D = 4.0± 0.5910�9 m2/s
at 1500 K from the mean square displacement, very close to
the experimental value of D = 3.97910�9 m2/s at
1358 K,[146] which validates the AIMD approach.[144]

Under stepwise quenching, liquid Cu transforms to the fcc
phase at about 600 K as evidenced by an internal energy
jump, abrupt changes in pair correlation functions in the
shape of the second and third peaks and several small new
peaks around them, significant increase of bond pairs
corresponding to fcc and hcp structures, and near-zero mean
square displacement. While in direct quenching, the liquid
Cu is frozen into a glass state by about 800 K with a clear
change in the slope of energy to temperature. However,
there is no energy jump, no abrupt change in pair correlation
functions, and there is partial transformation of part of
icosahedral clusters to bcc clusters. It also reveals that
icosahedral and tetrahedral clusters are predominant in the
liquid state, while the icosahedral, bcc, and tetrahedral
clusters are predominate in the glass state. Icosahedral and
bcc SRO are significantly enhanced during the liquid-glass
quenching process, whereas tetrahedral SRO is slightly
decreased. In the case of Zr, it is shown that liquid Zr
transforms to a metastable bcc phase (b-Zr) about 1000 K as
quenched at the rate of 4.391013 K/s.[145] When quenched
at 2.091014 K/s, however, the crystallization is suppressed
and liquid Zr is frozen into a glass phase. Bond pair analysis
reveals that short range order in both states mostly consists
of icosahedral and bcc clusters.

We have extended the AIMD calculations to several
families of bulk metallic glasses, including CuZrAl,[147]

MgCuY,[93,148] and ZrTiCuNiBe alloys.[94,149,150] It is clear
to the author that the great potential of the AIMD approach
is yet to be discovered.

5. Summary

In this overview, the fundamentals, approximations,
and applications of first-principles calculations and the
CALPHAD modeling are presented with an emphasis on the
integration of the two approaches. It is demonstrated that
the thermodynamic, kinetic, and structural properties at
finite temperatures predicted from first-principles calcula-
tions and multiscale entropic contributions based on the
first-principles calculations not only extend our deeper
understanding of alloy theories, but also provide quantita-
tive inputs in the CALPHAD modeling of a wide range
of materials properties. The power of integrating first-
principles calculations and the CALPHAD modeling is
significant to the development of robust materials databases
and will become even more important as the capabilities of
first-principle calculations continue to develop. With an
increasing amount of data from first-principles calculations
that was not available before, the CALPHAD modeling
procedures are also changing. For example, in the last few
years, we have been working on developing frameworks for
automatic updating of multicomponent thermodynamic
databases using data from first-principles calculations to
reduce uncertainties in model parameters.[152]
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